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Thermodynamic second law in irreversible processes of chaotic few-body systems
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Irreversible processes of few hard-ball~N! mechanical systems are investigated numerically and compared
with the theoretical results of quasistatic processes. The thermodynamic second law is valid forN>2 for both
equilibrium and nonequilibrium systems if the average ensemble of the large number of identical systems is
taken.
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The problem of ergodicity for low-dimensional chaot
systems has attracted continual interest in the several re
decades. The fundamental significance of this problem is
it builds up a bridge from mechanics to statistical phys
@1–6#. Very recently, the investigation in this regard has
cused on exploring the statistical properties and thermo
namic quantities of few-body ergodic chaotic systems, a
on examining the thermodynamic second-law~TSL! in equi-
librium states@7,8#. However, to our knowledge, a problem
of great importance for statistical physics and thermodyna
ics, the TSL in irreversible processes of purely mechan
few-body systems, has never been studied. In this Ra
Communication we focus our attention on studying the T
in irreversible processes of few-body chaotic systems.
numerical investigations, we find that the TSL is valid
these cases if fluctuations, which are inevitable for few-bo
systems, can be eliminated by ensemble average.

We consider a physical system, the motion ofN identical
and distinguishable classical hard balls of radiusr and mass
m in a box @a rectangle in two-dimensional~2D! space or a
cuboid in three-dimensional~3D! case#. The balls interact
elastically with each other and with the boundaries of
box. The Hamiltonian readsH5( i 51

N pi
2/2m, pi

25pix
2 1piy

2

andpi
25pix

2 1piy
2 1piz

2 for 2D and 3D motions, respectively
It is emphasized that these systems are practically impor
and realistic. They are well-known as gas systems forN
@1, and as typical chaotic and ergodic systems in few-b
(N>2) cases@9–13#. Therefore, various statistical and the
modynamic quantities can be computed analytically in eq
librium. Before considering irreversible processes, we fi
study the behavior of entropy forN-particle systems in equi
librium case. For instance, in 2D two-body cases we can g
explicit expression of entropy as

S2~2!5 ln Z2~2!1const

52 lnE1 lnFL1
2L2

22p~2r !2L1L21
4

3
~L11L2!

3~2r !31S p2
11

3 D ~2r !4G1const, ~1!

whereE is the energy of the system,L112r andL212r are
the lengths of two edges of the rectangle.
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For 2D systems with largeN and for 3D systems with
N>2, the expression of entropy becomes tedious~though no
principal difficulty exists for computations!. However, be-
cause of ergodicity it is easy to analytically predict the ge
eral form of the entropies for arbitraryN-particle systems.
For the 2D case withN particles, we have

SN~2!5N ln E1 ln f ~L1 ,L2 ,N,r !1const, ~2a!

E5A f1/NeSN(2)/N. ~2b!

In 3D case we have

SN~3!5
3

2
N ln E1 ln g~L1 ,L2 ,L3 ,N,r !1const, ~3a!

E5Bg2/(3N)e2SN(3)/(3N), ~3b!

where the constantsA and B and functionsf and g can be
easily determined numerically in a certain equilibrium pr
cess, i.e., in an adiabatic process.

For investigating irreversible~nonequilibrium! processes,
we move the right boundary of the systemL1 as L1(t)
5L102ut with all other boundaries of the system fixe
Then after each collision between a particle and the mov
wall, the particle’s velocity is reset to

v̄ i5v i , v̄'52v'22 u, ~4!

wherev and v̄ are the velocities of the given particle befo
and after the collision, respectively;v' and v̄' are the ve-
locity components perpendicular to the wall in the collisio
while v i and v̄ i are the parallel ones.

First, we letu→0, i.e., we deal with the quasistatic~re-
versible, or equilibrium! adiabatic process. All solid lines in
Fig. 1~a! are numerical simulations of quasistatic compre
sion processes~for N52 andu50.05!1) for three different
entropy values, and squares, circles, and triangles are t
retical predictions of the equal-entropy curves of Eq.~1! for
the corresponding entropies, respectively. The numerical
periments fit the analytic results perfectly. For largeN we do
not have full analytical forms of the entropy. However, a
the equal-entropy curves can be drawn semianalytically
cording to Eq.~2!. In Fig. 1~b! we perform a quasistatic
©2001 The American Physical Society02-1
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FIG. 1. L25100.~a! r 510. Equal-entropy curves inE-L1 plane for the 2D-two-body system for different entropies. The squares, cir
and triangles represent the theoretical predictions, and the solid curves plot the numerical quasistatic adiabatic compression proc
u50.05. The initial energy ofS0 curve is 13104 andS15S010.4463,S25S010.9400.~b! r 55. The initial energy of theS0 curve is 1
3105, andS15S013.6464,S25S016.7294. Equal-entropy curves for the 2D system with 20 balls. All solid curvesS0-S2 are drawn by
quasistatic adiabatic compressing (u50.1). Circles and triangles are predicted from the curveS0 and the formula from Eq.~2! for the
corresponding entropies asEi(L,S)5E(L,S0)eSi2S0, i 51,2. ~c! r 510. Different lines represent compression processes of the 2D-two-b
system for variousu from a given pair of (E,L1)(u50.05, 2, 10, and 50 for different lines from the lowest one!. The inset is the blowout
of the blocked part of the figure.~d! The same as~c! with r 55, N520 (u50.1, 1, 5, and 20 for different lines from the lowest one!.
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compression process forN520 to draw an equal-entrop
curve ~curveS0) numerically. Then, starting from the curv
S0, we compute all equal-entropy curves for differentS’s
according to the analytic form of Eq.~2!. For instance, the
circles and triangles in Fig. 1~b! represent the equal-entrop
curves for S15S013.6464, S25S016.7294, respectively
which are theoretically predicted from curveS0 and Eq.~2!.
Then we numerically perform the quasistatic compress
processes and plot all these equal-entropy curvesS1 andS2
in Fig. 1~b! by solid curves. We find again that the predi
tions ~circles and triangles! coincide with numerical results
~solid curves! very well.

At finite u the process becomes irreversible. Let us den
the energy increase in a process byDE5E(t)2E(t0). Ac-
cording to the TSL, we expectDEi.DEe , whereDEi and
DEe are the energy increases in irreversible and quasis
processes, respectively, for the same volume change@i.e., for
the sameDL5L(t)2L(t0)#. In Figs. 1~c! and 1~d! we plot
the E-L1 curves of the adiabatic compression processes
2D systems for variousu’s for N52 and N520, respec-
tively. In these figures, an average of 105 numerical data
from different initial conditions is used for each plot, and
L5L0 we run the system for long time beforet50 to ensure
that the initial ensembles are prepared in equilibrium wh
each reversible or irreversible processes started.

Two features are clearly shown in Figs. 1~c! and~d!. First,
all curves for u.0 are above the corresponding equ
entropy curves~the lowest line!. Second, a curve with large
u is always above the curves with smalleru. There isn’t any
intersection between these curves. These features stro
suggest that entropy production in irreversible proces
must be positive, and stronger irreversible processes h
larger entropy production rates~note, for any givenL1,
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larger E corresponds to larger entropy when equilibrium
reached!. All these observations fully agree with the TSL
both equilibrium and nonequilibrium processes, though
systems have only two particles.

By irreversible process, we mean that the state in the p
cess is in nonequilibrium. However, for a few-body~e.g.,
two-body! system, how can one distinguish equilibrium a
nonequilibrium states, since any state of a given system m
be strongly nonequilibrium? A clear answer to this proble
can be found by using the ensemble statistical distributi
Let us consider the three states indicated by dots in Fig. 1~c!.
In Fig. 2~a! we plot the theoretical prediction of equilibrium
probability distribution P(v) versus absolute velocityv
5Avx

21vy
2 by the solid line, and plot the ensemble distrib

tion for the adiabatic quasistatic compression process by
~the lowest dot in Fig. 1~c!, 60 000 samples are used for th
probability computation!. It is found that the dots follow the
theoretical curve satisfactorily, then the equilibrium state
indeed realized in the quasistatic process. In Figs. 2~b! and
2~c! we do the same as Fig. 2~a!, with the two upper dots in
Figs. 1~c! computed. It is obvious that the probability distr
butions for finiteu’s deviate from equilibrium distribution
considerably, and largeru produces stronger deviation an
then indicates stronger irreversibility.

In all the above simulations of irreversible processes,
applied the ensemble average of a large number of iden
systems to make the curves smooth. For the small ensem
fluctuations become inevitable. A detailed study of fluctu
tions is extremely useful for understanding the nature of
TSL in few-body systems. In Fig. 3 we consider the 2D-tw
body system, and compress our system fromL112r to
L1/212r for variousu, and then plotDS versusu, whereDS
is the entropy difference between the final state and the
2-2
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tial state. In Fig. 3~a! we average the results byM55 runs
and large fluctuations are observed. We observe that the
can be broken for many plots, i.e.,DS can be negative afte
these adiabatic compressions, andDS’s for a largeru can be
smaller than those for a smalleru. In Figs. 3~b! and 3~c!, we
do the same as Fig. 3~a! by averaging more runs. As th
number of averaging runsM increases, the fluctuations be
come increasingly weaker and the number of events brea
the TSL becomes less. In Fig. 3~d! all plots obey the second
law as 2000 averaging runs are taken.

By increasing the number of particles of the system,
can effectively reduce fluctuations. In Figs. 4~a!-4~c! we do

FIG. 2. ~a! Plots: the velocity distribution of a given particl
P(v1) (v15Av1x

2 1v1y
2 ) for adiabatic compressing at the lowest d

in Fig. 1~c!. 60 000 runs have been taken for computing the pr
ability. The straight line shows the theoretical prediction of t
equilibrium probability distribution for the given (E,L1). ~b!, ~c!
The same as~a! with the dots in theu52, andu550 curves, re-
spectively, in Fig. 1~c! being considered.

FIG. 3. r 510, L25100. Entropy increases during the adiaba
compressing processes of the 2D-two-body system vsu. ~a! Aver-
age ofM55 runs is taken.~b!, ~c!, and ~d! The same as~a! with
M550, 500, and 2000 are taken, respectively. In~d! the TSL is
valid without exception.
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the same as Figs. 3 withN replaced byN520 @~a! and~b!#,
andN5500 @~c!#, respectively. In Fig. 4~a! we applyM55.
Though some events can still fluctuate to break the TSL,
number of these events is considerably reduced in comp
son withN52 for the sameM. As M520, we can already
eliminate the event breaking TSL inN520 case@Fig. 4~b!#.
For sufficiently largeN (N5500 in our case!, we can ob-
serve that all the plots of a single system can perfectly foll
the TSL @see Fig. 4~c!# in our precision, then self-averagin
plays role for such a large number of particles.

In all the above discussions, we considered systems
are ergodic and chaotic for static boundaries. We have sh
that the TSL is valid for both reversible and irreversible pr
cesses. It is emphasized that any ergodic system must sa
the TSL in a reversible process, whether chaotic or nonc
otic, but it is interesting to point out that a nonchaotic syst
ergodic in the static vessel may not satisfy the TSL in ir
versible processes. Let us consider a one-particle system
1D system of lengthL0, where the particle moves freely i
the space and collides with the two boundaries elastic
~note, the radius of the particle is now an irrelevant para
eter!. This system is obviously ergodic while nonchaotic.
this case, the entropy of the equilibrium stateS1(1)
5 ln 2A2E/mL1const, and for the quasistatic adiabatic co
pression, the energy of the system isE5E0L0

2/L2. Then the
entropy of the system during the compression isS1(1)
5 ln 2A2E0L0

2/m, which keeps constant following the TSL
In Fig. 5, we numerically compute adiabatic quasistatic co
pression the same as Figs. 1~c! and 1~d!, starting from an
ensemble of uniform distribution in the space, and obtain
E-L curveS0, which coincides with the analytic results pe
fectly. The TSL is thus valid indeed for a reversible proce
even though the system is nonchaotic. TheE-L curve for
finite u can also analytically calculated. Here we will n
give the explicit form, which is a bit complicated, rather w
present the results of numerical computation of some a
batic compressions in Fig. 5, where theE-L curves ofu
510 andu520 are presented by dash-dot line and dot lin

-

FIG. 4. L25100. ~a!, ~b! The same as Fig. 3 withN520, r
55. ~a! M55 ~b! M520. ~c! The same as Fig. 3 withN5500, r
51.6, andM51.
2-3
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We find that,DEi ’s are not always greater thanDEe’s, thus
the TSL is violated. Moreover,DEi for larger u can be
smaller than that of smalleru, which is also against the TSL
Though we cannot tell the precise conditions for the valid
of the TSL in few-body systems, it is definitely known fro
Fig. 5 that ergodic and nonchaotic systems satisfying

FIG. 5. The same as Fig. 1~c! with 1D and the one-particle
system is considered.L05100, E052500. The curveS0 ~the solid
line in the figure! represents a quasistatic process, which is
equal-entropy curve for the ergodic system; dash-dot line and
line are the curves ofu510 andu520, respectively. Violation of
the TSL is clearly seen for the curves of finiteu’s.
l

i-

cs

ev
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TSL in reversible processes may not obey the TSL in ir
versible processes.

In conclusion, we find that the TSL is valid in irreversib
processes of chaotic ergodic few-hard-ball systems. This
lidity is disregarding the number of particles of the syste
As the number of particles of the system is small, an aver
ensemble of many identical systems is necessary for el
nating fluctuations and explaining the TSL. By increasing
number of particles of the system, we can considerably
duce fluctuations. For the thermodynamic limitN→`, we
can surely anticipate negligibly small fluctuations and t
validity of the TSL in the conventional sense, i.e., validi
for a single system. Therefore a bridge from the TSL
chaotic few-body mechanical systems to that for usual th
modynamic system in irreversible processes is clearly b
up for our systems. We have checked the above conclus
by considering both 2D and 3D systems and by varying
number and the radiusr of particles, and also by changingu
from positive to negative, etc., in all numerical experimen
the TSL is definitely valid. We were able to check the TSL
purely mechanical~no thermo-reservoir is involved! few-
body systems in irreversible processes~i.e., for the inequality
of the TSL!.
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