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Thermodynamic second law in irreversible processes of chaotic few-body systems
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Irreversible processes of few hard-b@l) mechanical systems are investigated numerically and compared
with the theoretical results of quasistatic processes. The thermodynamic second law is VdkeiXdor both
equilibrium and nonequilibrium systems if the average ensemble of the large number of identical systems is
taken.
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The problem of ergodicity for low-dimensional chaotic  For 2D systems with larg& and for 3D systems with
systems has attracted continual interest in the several receNt=2, the expression of entropy becomes tedi@hsugh no
decades. The fundamental significance of this problem is thairincipal difficulty exists for computations However, be-
it builds up a bridge from mechanics to statistical physicscause of ergodicity it is easy to analytically predict the gen-
[1-6]. Very recently, the investigation in this regard has fo-eral form of the entropies for arbitramy-particle systems.
cused on exploring the statistical properties and thermodyFor the 2D case withN particles, we have
namic quantities of few-body ergodic chaotic systems, and

on examining the thermodynamic second-lgV&L) in equi- Sy(2)=NInE+Inf(Ly,L,,N,r)+const, (2a)
librium stateg7,8]. However, to our knowledge, a problem
of great importance for statistical physics and thermodynam- E=AfMNeSN@IN, (2b)

ics, the TSL in irreversible processes of purely mechanical
few-body systems, has never been studied. In this Rapith 3D case we have
Communication we focus our attention on studying the TSL

in irreversible processes of few-body chaotic systems. By 3

numerical investigations, we find that the TSL is valid in Su(3)=5NInE+Ing(Ly,Ls,Lg,N,r)+const, (38
these cases if fluctuations, which are inevitable for few-body

systems, can be eliminated by ensemble average. E=BgZ/(Ne2Sn@)/(N) (3b)

We consider a physical system, the motior\bidentical
and distinguishable classical hard balls of radiwnd mass

min a box|a rectangle in two-dimension&2D) space or &  gagily determined numerically in a certain equilibrium pro-
cuboid in three-dimensiondBD) casqg. The balls interact cess, i.e., in an adiabatic process.

elastically with each other and with ;he boundaries of the g, investigating irreversiblénonequilibrium processes,

box. '2I'he 2Ham2ilt0ni2an readb|=2i’\':1pi/2m, pizzpiZX"'Pizy we move the right boundary of the system as L,(t)
andp;" = pj, + pjy + p;; for 2D and 3D motions, respectively. —| . —ut with all other boundaries of the system fixed.

It is emphasized that these systems are practically importanthen after each collision between a particle and the moving
and realistic. They are well-known as gas systemsNor \all, the particle’s velocity is reset to

>1, and as typical chaotic and ergodic systems in few-body
(N=2) case§9-13). Therefore, various statistical and ther-
modynamic quantities can be computed analytically in equi-
librium. Before considering irreversible processes, we first h do are th lociti f the ai ticle bef
study the behavior of entropy fou-particle systems in equi- wherev andv are_ _e veloci |es_ ot Ihe given particie betore
librium case. For instance, in 2D two-body cases we can giv@nd after the collision, respectively; andv, are the ve-
explicit expression of entropy as locity components perpendicular to the wall in the collision,
while v andv are the parallel ones.
First, we letu—0, i.e., we deal with the quasistatice-
versible, or equilibriunhadiabatic process. All solid lines in
4 Fig. 1(a) are numerical simulations of quasistatic compres-

L,%L,2— m(2r)2L,L,+ 3(LitLe) sion processegor N=2 andu=0.05<1) for three different

entropy values, and squares, circles, and triangles are theo-

retical predictions of the equal-entropy curves of Eg.for
+const, 1) the corresponding entropies, respectively. The numerical ex-

periments fit the analytic results perfectly. For laijeve do

not have full analytical forms of the entropy. However, all
whereE is the energy of the systerh; +2r andL,+2r are  the equal-entropy curves can be drawn semianalytically ac-
the lengths of two edges of the rectangle. cording to EQ.(2). In Fig. 1b) we perform a quasistatic

where the constantd and B and functionsf and g can be

vI=v, vy =-v,—-2uU, (4)

S,(2)=InZ,(2)+ const

=2InE+In

><(2r)3+(7r— 131)(204
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FIG. 1. L,=100.(a) r =10. Equal-entropy curves i&-L, plane for the 2D-two-body system for different entropies. The squares, circles,
and triangles represent the theoretical predictions, and the solid curves plot the numerical quasistatic adiabatic compression processes, with
u=0.05. The initial energy o8, curve is 1X 10* and S; = Sy+ 0.4463,S,=S,+0.9400.(b) r=5. The initial energy of thé&, curve is 1
X 10°, andS; = Sy+ 3.6464,S,= S,+ 6.7294. Equal-entropy curves for the 2D system with 20 balls. All solid cuBye8, are drawn by
guasistatic adiabatic compressing={(0.1). Circles and triangles are predicted from the cuByeand the formula from Eq(2) for the
corresponding entropies &(L,S)=E(L,S,)e5 %, i=1,2.(c) r=10. Different lines represent compression processes of the 2D-two-body
system for variousi from a given pair of E,L,)(u=0.05, 2, 10, and 50 for different lines from the lowest oriéhe inset is the blowout
of the blocked part of the figuréd) The same agc) with r=5, N=20 (u=0.1, 1, 5, and 20 for different lines from the lowest fine

compression process fod=20 to draw an equal-entropy larger E corresponds to larger entropy when equilibrium is
curve (curve Sp) numerically. Then, starting from the curve reachedl All these observations fully agree with the TSL in
Sy, we compute all equal-entropy curves for differesis both equilibrium and nonequilibrium processes, though the
according to the analytic form of E@2). For instance, the systems have only two particles.
circles and triangles in Fig.(l) represent the equal-entropy By irreversible process, we mean that the state in the pro-
curves forS;=Sy+3.6464, S,=S,+6.7294, respectively, cess is in nonequilibrium. However, for a few-bo¢s.g.,
which are theoretically predicted from cur@ and Eq.(2).  two-body system, how can one distinguish equilibrium and
Then we numerically perform the quasistatic compressiomonequilibrium states, since any state of a given system must
processes and plot all these equal-entropy cuBieandS,  be strongly nonequilibrium? A clear answer to this problem
in Fig. 1(b) by solid curves. We find again that the predic- can be found by using the ensemble statistical distribution.
tions (circles and trianglescoincide with numerical results Let us consider the three states indicated by dots in k@. 1
(solid curve$ very well. In Fig. 2(a) we plot the theoretical prediction of equilibrium
At finite u the process becomes irreversible. Let us denotgrobability distribution P(v) versus absolute velocity
the energy increase in a process b =E(t) — E(ty). Ac- = \/vxz+vy2 by the solid line, and plot the ensemble distribu-
cording to the TSL, we expedE;>AE,, whereAE; and tion for the adiabatic quasistatic compression process by dots
AE, are the energy increases in irreversible and quasistatighe lowest dot in Fig. (c), 60 000 samples are used for the
processes, respectively, for the same volume chiirggefor  probability computation It is found that the dots follow the
the sameAL=L(t)—L(tp)]. In Figs. Xc) and 1d) we plot  theoretical curve satisfactorily, then the equilibrium state is
the E-L, curves of the adiabatic compression processes ahdeed realized in the quasistatic process. In Figls) and
2D systems for variousi’s for N=2 and N=20, respec- 2(c) we do the same as Fig(&, with the two upper dots in
tively. In these figures, an average of°1@umerical data Figs. 1c) computed. It is obvious that the probability distri-
from different initial conditions is used for each plot, and atbutions for finiteu’s deviate from equilibrium distribution
L=L, we run the system for long time befare O to ensure considerably, and largar produces stronger deviation and
that the initial ensembles are prepared in equilibrium whernthen indicates stronger irreversibility.
each reversible or irreversible processes started. In all the above simulations of irreversible processes, we
Two features are clearly shown in Figgclland(d). First,  applied the ensemble average of a large number of identical
all curves foru>0 are above the corresponding equal-systems to make the curves smooth. For the small ensemble,
entropy curvegthe lowest ling. Second, a curve with larger fluctuations become inevitable. A detailed study of fluctua-
u is always above the curves with smallerThere isn’t any tions is extremely useful for understanding the nature of the
intersection between these curves. These features stronghBL in few-body systems. In Fig. 3 we consider the 2D-two-
suggest that entropy production in irreversible processebody system, and compress our system framt-2r to
must be positive, and stronger irreversible processes hawue /24 2r for variousu, and then ploA S versusu, whereAS
larger entropy production rate@ote, for any givenLq, is the entropy difference between the final state and the ini-
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FIG. 4. L,=100. (a), (b) The same as Fig. 3 withN=20, r
=5. (@) M=5 (b) M=20. (c) The same as Fig. 3 witN=500, r
=1.6, andM=1.

FIG. 2. (a) Plots: the velocity distribution of a given particle
P(vy) (v1= \/021X+U21y) for adiabatic compressing at the lowest dot
in Fig. 1(c). 60 000 runs have been taken for computing the prob-
ability. The straight line shows the theoretical prediction of the
equilibrium probability distribution for the givenEL,). (b), (c)
The same aga) with the dots in theu=2, andu=50 curves, re-
spectively, in Fig. {c) being considered.

the same as Figs. 3 witK replaced byN=20 [(a) and (b)],
andN=500{[(c)], respectively. In Fig. &) we applyM =5.
Though some events can still fluctuate to break the TSL, the
number of these events is considerably reduced in compari-

tial state. In Fig. 8) we average the results by =5 runs SO WithN=2 for the sameM. As M =20, we can already
and large fluctuations are observed. We observe that the TSgliminate the event breaking TSL M=20 cas¢Fig. 4(b)].
can be broken for many plots, i.&AS can be negative after For sufficiently largeN (N=500 in our casg we can ob-
these adiabatic compressions, an#l's for a largeru can be ~ S€rve that all the plots _of a single system can perfectly fc_>||ow
smaller than those for a smallerIn Figs. 3b) and 3c), we  the TSL[see Fig. 4c)] in our precision, then self-averaging
do the same as Fig.(® by averaging more runs. As the Plays role for such a large number of particles.
number of averaging runsl increases, the fluctuations be- [N all the above discussions, we considered systems that
come increasingly weaker and the number of events breakin%re ergodic and chaotic for static boundaries. We have shown
the TSL becomes less. In Fig(@ all plots obey the second that the TSL is valid for both reversible and irreversible pro-
law as 2000 averaging runs are taken. cesses. Itis empha_5|zed that any ergodic system must satisfy
By increasing the number of particles of the system, wdhe TSL in a reversible process, whether chaotic or noncha-

can effectively reduce fluctuations. In Figgag4(c) we do otic, b.ut.it is interesting to point out that a nonchaotic system
ergodic in the static vessel may not satisfy the TSL in irre-

versible processes. Let us consider a one-particle system in a

0s] @ . ®) 1D system of length.y, where the particle moves freely in
] the space and collides with the two boundaries elastically
0.4 (note, the radius of the particle is now an irrelevant param-
o eten. This system is obviously ergodic while nonchaotic. In

this case, the entropy of the equilibrium staf(1)
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FIG. 3.r=10, L,=100. Entropy increases during the adiabatic
compressing processes of the 2D-two-body system. a) Aver-
age of M =5 runs is taken(b), (c), and(d) The same aga) with
M =50, 500, and 2000 are taken, respectively.(dpthe TSL is
valid without exception.
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=1In 2\2E/mL+ const, and for the quasistatic adiabatic com-
pression, the energy of the systentis EOL(%/LZ. Then the
entropy of the system during the compressionSg1)

=In 2\/2E0L02/m, which keeps constant following the TSL.
In Fig. 5, we numerically compute adiabatic quasistatic com-
pression the same as Figgcjland Xd), starting from an
ensemble of uniform distribution in the space, and obtain the
E-L curveS,, which coincides with the analytic results per-
fectly. The TSL is thus valid indeed for a reversible process
even though the system is nonchaotic. TEé. curve for
finite u can also analytically calculated. Here we will not
give the explicit form, which is a bit complicated, rather we
present the results of numerical computation of some adia-
batic compressions in Fig. 5, where theL curves ofu
=10 andu=20 are presented by dash-dot line and dot line.
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TSL in reversible processes may not obey the TSL in irre-
5000_:\\ .......................... 2400 versible processes.

S In conclusion, we find that the TSL is valid in irreversible
processes of chaotic ergodic few-hard-ball systems. This va-
lidity is disregarding the number of particles of the system.
As the number of particles of the system is small, an average
ensemble of many identical systems is necessary for elimi-
S nating fluctuations and explaining the TSL. By increasing the
number of particles of the system, we can considerably re-
~~~~~~~~~~~ duce fluctuations. For the thermodynamic liflt—c, we

w 3080 2200
4000

2000

73 74 75 78 77

W 3000 4

2000

can surely anticipate negligibly small fluctuations and the
1000 , : i : , : , : _ validity of the TSL in the conventional sense, i.e., validity
50 60 70 80 90 100 for a single system. Therefore a bridge from the TSL for
L chaotic few-body mechanical systems to that for usual ther-
FIG. 5. The same as Fig.(d with 1D and the one-particle modynamic system in irreversible processes is clearly b_uilt
system is considered., =100, Eo=2500. The curve, (the solid ~ UP for our systems. We have checked the above conclusions
line in the figure represents a quasistatic process, which is anby considering bOth,ZD and 3D systems and by vary[ng the
equal-entropy curve for the ergodic system: dash-dot line and ddfumber and the radiusof particles, and also by changing

line are the curves ofi=10 andu= 20, respectively. Violation of ~from positive to negative, etc., in all numerical experiments
the TSL is clearly seen for the curves of finiiés. the TSL is definitely valid. We were able to check the TSL in

purely mechanicalno thermo-reservoir is involvedfew-
body systems in irreversible processes., for the inequality
of the TSD.

We find that,AE;’s are not always greater thaXE_'s, thus

the TSL is violated. MoreoverAE; for larger u can be This work has been supported by the National Natural
smaller than that of smaller, which is also against the TSL. Science Foundation of China and the Special Funds for Ma-
Though we cannot tell the precise conditions for the validityjor State Basic Research Projects. Z.Z. has been partially
of the TSL in few-body systems, it is definitely known from supported by the Foundation for University Key Teacher by
Fig. 5 that ergodic and nonchaotic systems satisfying thé¢he Ministry of Education.
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